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1. Introduction and summary

In this work we will combine two strands of research that have each generated interesting

results within the AdS/CFT correspondence [1] over the past couple of years.

On the one hand, it has been understood how the dynamics of certain supersymmetric

sectors of N = 4 super Yang-Mills theory on a spatial S3 are described by matrix models

for the scalar fields ΦJ of the theory. Furthermore, it was discovered that the eigenvalue

distributions of these scalars directly reconstruct a dual spacetime geometry [2 – 5]. These
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works have provided a striking realisation of emergent geometry within the AdS/CFT

setup.

On the other hand, in the same theory at finite temperature it was shown that at

weak ’t Hooft coupling there is a phase transition at a critical temperature [6, 7]. This

transition appears to be similar to the Hawking-Page transition at strong coupling, which

describes the appearance of a black hole in the dual geometry [8, 9]. In particular, for both

phase transitions the eigenvalue distribution of the time component of the gauge field,

A0, becomes a nonuniform distribution on S1 at the transition and ultimately becomes a

gapped distribution as the temperature is increased.

Combining the insights of these works, one might hope that studying the joint eigen-

value distribution of {A0,ΦJ} could lead to an understanding of the dual black hole ge-

ometry in the weak coupling regime. In fact, a fundamental question is whether or not

there is a well defined sense in which it is useful to conceive of a weakly coupled plasma

as being dual to a black hole. Various recent works have posed this as a question about

correlators in real time physics [10 – 14]. The question is not purely of conceptual interest,

as some discussion of the fireball created in the Relativistic Heavy Ion Collider attests,

see for instance [15, 16]. The approach here will be Euclidean and hence concerned with

equilibrium physics.

In most works on the finite temperature theory at weak coupling, the scalar fields

are integrated out on the grounds that they acquire thermal masses, as well as having a

classical mass due to being conformally coupled to a spatial S3. However, at temperatures

TR ∼ λ−1/2, the one loop thermal mass of A0 is of the same magnitude as that for the

scalar fields, so A0 and ΦJ (and indeed the Ai [17]) should participate equally in the

dynamics. The full dynamics of the theory is difficult to study, as there are infinitely many

coupled modes that can condense, and furthermore generic condensates will not commute.

In this work we will make the drastic (but consistent) simplification of only considering

saddles in which the homogeneous modes of {A0,ΦJ} condense and where the condensates

commute. We believe that these are interesting saddles to consider; they are the most

‘geometric’ of possible saddles at weak coupling and can be described very explicitly. They

may also have a connection with the dominant geometrical saddles at strong coupling. At

low temperatures, we may expect such a geometric connection in the spirit of the work

of [4]. However, it is clear [17] at high temperatures, that they are not the absolute minima

of the theory. Phase transitions in these saddles are not transitions of the full theory.

The effective potential necessary for this study, the potential for commuting scalars and

A0, was computed in [18], who used it to show that the potential reveals a weak coupling

analogue of the Gregory-Laflamme instability of the small black hole towards localisation

on S5 [18]. In [19] it was found that allowing one scalar field to be non-zero leads to a

non-trivial joint eigenvalue distribution of {A0,ΦJ}. This is due to a logarithmic repulsion

between the scalar eigenvalues at large N overcoming the classical and thermal mass terms.

However, the solutions found in [19] break R symmetry in picking out a given scalar field.

In this work we find the eigenvalue distribution of {A0,ΦJ} that minimises the one

loop effective potential of N = 4 super Yang-Mills theory on S1 × S3, when restricted to

commuting matrices for the homogeneous modes of A0 and ΦJ . Our results cover the whole
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range of temperatures and couplings for which the one loop potential is valid: TR ≪ λ−1.

We use R to denote the radius of the spatial S3. As well as finding the minimal action

distribution, which preserves SO(6) R symmetry, in appendix B we exhibit other interesting

saddle points of the effective action with various patterns of R symmetry breaking.

In the supersymmetric sector, the logarithmic repulsion between — and subsequent

condensation of — scalar eigenvalues is crucial for the emergence of a dual spacetime

geometry in the large N limit [4, 5]. This effect needs to be considered also at finite

temperature. A central result of our work is that at high temperatures TR = λ−1/2,

the condensate of scalar eigenvalues backreacts sufficiently onto the distribution of the A0

eigenvalues to cause a new phase transition, in the commuting matrix saddle.

1.1 Summary of results on the eigenvalue distribution

At low temperatures we find analytically that the eigenvalues are uniformly distributed as

S1 ×S5. Here the S1 is in the A0 direction whereas the S5 is in the ΦJ directions and has

a radius that scales like λ/R.

At the deconfinement temperature, TRc = −1/ log(7−4
√

3) ≈ 0.38 [7], the distribution

on S1 develops a gap. We show analytically that this implies that the full distribution

acquires topology S6.

At high temperatures, 1 ≪ TR ≪ λ−1, we find two candidate saddle points. There

is an S5 distribution that can be described analytically and an ellipsoidal distribution

with topology S6 that we obtain analytically for TR ≪ λ−1/2 and numerically at higher

temperatures. The S5 solution is at a point in the A0 direction. Both solutions preserve

the full SO(6)R symmetry.

At weak coupling, we find that the ellipsoidal solution has lowest action at temperatures

TRc ≤ TR < λ−1/2. The first result of this paper is therefore that, in the sector of

commuting spatially homogeneous fields, the low and high temperature phases of weakly

coupled N = 4 SYM theory on S3 are characterised by eigenvalue distributions with

differing topology: S1 × S5 versus S6. As the temperature is increased to the value

TR = λ−1/2 at fixed weak coupling, or equivalently, as the coupling is increased up to

λ = 1/(TR)2 at fixed high temperatures, we find compelling evidence for a second order

phase transition. In this transition the S6 solution smoothly collapses to S5. We summarize

the behaviour of these saddles in figure 1 below. Details will be discussed below.

2. The effective potential

Our starting point is the one loop effective potential of N = 4 SYM theory on S1 × S3,

restricted to a certain sector of the theory. We denote the radius of the S3 by R and

β = 1/T will be the circumference of the thermal S1. The effective potential is the result

of integrating out all inhomogeneous modes on the three sphere and depends only on the

homogeneous modes. The latter are the vacuum expectation values of the six scalar fields

in the theory, ΦJ , J = 1, 2, . . . , 6,1 and the time component of the gauge field, A0. This

potential was computed in [18] and also discussed recently in [19].

1We denote a six vector with a boldface symbol, e.g. Φ and φ.
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Figure 1: Topology of the dominant eigenvalue distribution in which the only the homogeneous

modes of {A0, ΦJ} condense and furthermore commute.

An important feature of the effective potential is that it is evaluated on the space of

mutually commuting scalar homogeneous modes. The potential is therefore a function of

the eigenvalues of the adjoint scalars, which we denote by {φp}, p = 1, 2, . . . , N , and the

eigenvalues of βA0, which we denote by {θp}.
It is natural to consider the effective potential on the space of commuting scalar field

expectation values. In flat space and at zero temperature, these characterize the moduli

space of vacua of the N = 4 theory, wherein off diagonal modes obtain masses |φpq|.2
There is no moduli space on S3 due to the classical conformal coupling to the background

scalar curvature. However, around a homogeneous background with commuting VEVs for

the scalars, off diagonal fluctuations of the scalar zero modes obtain a positive mass given

by
√

R−2 + |φpq|2 and those of A0 have masses |φpq|. For this reason all the configurations

that we consider will be locally stable against small fluctuations involving the off-diagonal

entries of the scalar field matrices. This is also manifest in the reality of the one loop

effective potential below, on the space of simultaneously diagonal configurations.

We should emphasize that whereas the truncation to commuting matrices is consistent,

it will not describe the absolute minimum of the action [17]. We will see however, that

these commuting saddles display some interesting dynamics. Throughout this work, we

are only considering saddles in which the matrices commute.

A second consistent truncation we have made is to consider condensates for only the

homogeneous modes. At infinite N , the inhomogeneous modes can also condense without

breaking the spatial SO(4) rotational invariance. The full dynamics should include these

modes also.

There are three contributions to the potential: the classical conformal mass term for

2We set |φ| ≡
p

P

J
φ2

J and φpq = φp − φq.
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the scalars and then two determinants arising from integrating out the bosons and fermions

in the theory

Seff [φp, θp] = S(0) + S
(1)
b + S

(1)
f . (2.1)

The classical term is

S(0) =
βRπ2N

λ

N
∑

p=1

|φp|2 . (2.2)

Integrating out the gauge fields, scalar and ghost fluctuations yields the bosonic contribu-

tion

S
(1)
b =

N
∑

pq=1

{

− log

∣

∣

∣

∣

sinh
β|φpq| + iθpq

2

∣

∣

∣

∣

− log 2

+
∞
∑

ℓ=0

2(2ℓ + 3)(2ℓ + 1)

(

β

2

√

(ℓ + 1)2R−2 + |φpq|2 (2.3)

+ log
∣

∣

∣
1 − e−β

√
(ℓ+1)2R−2+|φpq|2+iθpq

∣

∣

∣

)}

.

Here

|φpq| =
√

(φp − φq)
2; θpq = θp − θq. (2.4)

The fermion fluctuation determinants contribute

S
(1)
f = −

N
∑

pq=1

∞
∑

ℓ=1

8ℓ(ℓ + 1)

(

β

2

√

(ℓ + 1/2)2R−2 + |φpq|2

+ log

∣

∣

∣

∣

1 + e−β
√

(ℓ+1/2)2R−2+|φpq |2+iθpq

∣

∣

∣

∣

)

. (2.5)

The validity of the one loop potential requires weak ’t Hooft coupling, λ ≪ 1, but also

λ ≪ 1/(TR). This is because at TR ∼ λ−1 the spatial S3 is the same size as the non-

perturbatively generated magnetic screening scale. Our objective is now to minimise this

potential and analyse how the ground state depends on the temperature and coupling. The

Casimir terms in (2.3) and (2.5)3 can consistently be ignored, since expanding them in φ

gives terms of the form βR|φ|2(1+O(R2φ2)) which, at weak coupling, is always subleading

compared with the tree level mass term. It is important, however, that we do not ignore the

φpq dependence of the exponential terms because these are enhanced at high temperature

TR → ∞, and will play a significant rôle in our analysis in this regime.

3. Low temperature distribution: S1 × S5

The action at low RT ≪ 1 is

STR≪1 =
Nπ2Rβ

λ

N
∑

p=1

|φp|2 −
N

∑

pq=1

log

∣

∣

∣

∣

sinh
β|φpq| + iθpq

2

∣

∣

∣

∣

− N2 log 2 . (3.1)

3These are the first terms in the sum over ℓ, involving square roots.
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This expression neglects terms in the action (2.1) that are exponentially suppressed at

low temperatures. The logarithmic repulsive force generated between the eigenvalues is a

generalised Vandermonde type interaction resulting from integrating out the off-diagonal

fluctuations; its origin can be traced to the ghost and gauge fixing terms in the action [18].

At λ = 0, when the scalars identically vanish, it reduces to the measure factor in the

unitary matrix model of [7].

The pairwise eigenvalue repulsion is only countered by an external quadratic attractive

potential along the scalar field directions. We should therefore expect the lowest energy

state to be localized in the scalar directions and maximally spread out, i.e. uniformly

distributed, along the S1. In this case, using the fact that

log

∣

∣

∣

∣

sinh
β|φ| + iθ

2

∣

∣

∣

∣

= − log 2 +
β

2
|φ| −

∞
∑

n=1

1

n
e−nβ|φ| cos(nθ) , (3.2)

and noticing that the periodic pieces will average to zero for a uniform distribution of θps,

we have an effective action

STR≪1 =
Nπ2Rβ

λ

N
∑

p=1

|φp|2 −
β

2

N
∑

pq=1

|φpq| . (3.3)

In fact we will find in the next section that this action is valid all the way up to the

confinement/deconfinement transition. One way to see this is to note that, as we do in the

next section, that below the confinement/deconfinfement transition the θps are uniformly

distributed around S1. Hence, the averaging over them has the same effect in the action

as sending T → 0.

It is convenient to introduce the dimensionless variables

xp = βφp . (3.4)

At large N we can pass to a continuum limit. The eigenvalues are described by a joint

distribution in seven dimensions, which satisfies the normalisation condition

1

N

N
∑

p=1

→
∫

d6xdθ ρ(x, θ) = 1 , (3.5)

although in the present case ρ(x, θ) = ρ(x) only. The equation of motion for x is

π2RT

λ
x = π

∫

D
d6x′ ρ(x′)

x − x′

|x − x′| , (3.6)

where the eigenvalue distribution has support in some domain D ⊂ R6 and x ∈ D.

We can see that (3.6) has a solution for which D is an S5 of radius r, which is easily

determined. The density is found to be

ρ(x) =
δ(|x| − r)

2π4r5
, (3.7)
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where the radius r is

r =
λ

π3RT

1024

945
. (3.8)

This solution coincides with the zero temperature S5 solution of [4] which is what we

should expect in the low temperature limit where thermal effects are negligible. Impor-

tantly, the smooth S5 is a consequence of the large N limit. The SO(6) symmetry of the

N = 4 theory is left unbroken in this saddle by a global SO(6) rotation on each of the xp

combined with the action of the Weyl group of SU(N) which acts through permutations

of the xp.

Let us determine the action associated to this S5 × S1 geometry of eigenvalues

SS5×S1 =
2N2π3TR

λ

∫

d6x ρ(x) x2 − 4π2N2

∫

d6x

∫

d6x′ ρ(x)ρ(x′) log |x−x′| . (3.9)

To this order in perturbation theory, we find that the action for this configuration is

1

N2
SS5×S1 = − λ

π4

10242

9452

1

TR
. (3.10)

The action is lower than that of both the solution in which the scalars have zero expecta-

tion value, and also of the band solution found in [19], in which all xp acquired non-zero

expectation values along the same direction in SO(6) space, thus only preserving an SO(5)

subgroup of the global symmetry group. It seems very likely that this maximally symmetric

saddle is the absolute minimum of the effective potential at low temperatures, within the

sector of the theory we are considering. We prove stability against R symmetry breaking

perturbations in appendix A. Furthermore, in appendix B we find various other saddle

points with reduced R symmetry and find that they have a higher action.

It is striking that the eigenvalue distribution localises to a hypersurface and does not

spread out in all the six noncompact dimensions. In fact, we can exclude six dimensional

solutions to the effective equation of motion for the scalars (assuming a uniform distribution

on S1), by repeated application of the ∇ operator in six dimensions. In particular, acting on

equation (3.6) with the operator ∇2(∇·), we find
∫

d6x′ ρ(x′)/|x−x′|3 = 0 which implies a

vanishing density in six dimensions. This then implies that the eigenvalues at large N must

be constrained to lie on a hypersurface in six dimensions and this is indeed what we find.

An argument along similar lines was shown in [4], implying that eigenvalue distributions

arising from similar commuting matrix models were always singular. Localisation to a

hypersurface is the simplest way to achieve this.

Note that our analysis is consistent with [7] when λ = 0: the emergent S5 disappears

and only the configuration space of eigenvalues of the Polyakov loop remains. As advocated

in [2, 4] the large N vacuum configuration of eigenvalues should be interpreted as the

emergence, at weak ’t Hooft coupling in our case, of the S5 in the dual AdS5 × S5

geometry. The connection to a dual geometry is discussed in more detail below.

4. The deconfinement transition: S1 × S5 → S6

This section describes the distribution for TR ≪ λ−1/2. In particular, we will be interested

in the ‘deconfinement’ or ‘Hagedorn’ transition that occurs at TRc ≈ 0.38 [7]. We will see

– 7 –
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that the eigenvalue distribution undergoes a topology change: S1 × S5 → S6. We will

comment on possible spacetime interpretations of this transition in a later section. The

details of the transition are accessible within standard perturbation theory in λ which is

valid for all temperatures TR ≪ λ−1/2.

To analyze the vicinity of the phase transition we make use of certain properties of

the equilibrium distribution of the scalar fields at weak coupling. At an equilibrium, the

tree level attractive potential balances out the pairwise repulsive forces generated at one

loop. It is straightforward to see that the one loop contribution to the effective action (2.1)

can only compete with the tree level term if |x| ∼ O(λ). Hence, in order to be consistent

with the perturbative expansion we should expand the one loop contribution in powers of

x. This has the effect of reorganizing the pertubative expansion. The only caveat is that

when the temperature is very high, TR & λ−1/2, a further reorganization occurs which we

shall describe in a later section. In this section we shall assume that TR ≪ λ−1/2.

We now define x = λx̃ and expand the action up to O(λ) to obtain

S = λ0S(0)(θ) + λ
(

S(1)(θ, x̃) + S2-loop(θ)
)

+ O(λ2) , (4.1)

where

S(0)[θ] =

N
∑

pq=1

∞
∑

n=1

1

n

[

1 − zB(e−n/TR) − (−1)n+1zF (e−n/TR)

]

cos(nθpq) . (4.2)

This is precisely the λ = 0 effective potential of [7]. The single particle partition functions

zB and zF will be given below. At the Hagedorn transition, the coefficient of the lowest

cosine term becomes negative [7]. The one loop term in the action (4.1), using (3.2), is

given by:

S(1)[θ, x̃] = Nπ2TR

N
∑

p=1

|x̃p|2 −
1

2

N
∑

pq=1

|x̃pq|
[

1 + 2

∞
∑

n=1

cos(nθpq)

]

. (4.3)

It is clear from the form of the expansion (4.1) that to leading order the θps are unaffected

by the scalars. In other words the θp, and their density in the large N limit, behave to

leading order exactly as they did with zero scalar VEVs. The scalar VEVs themselves

are then, to leading order, determined by finding the minimum of S(1)(θ, x̃) with the given

values for θp. Notice that although this term is of the same order as a two loop contribution,

the latter contribution only involves the θp, as indicated, and therefore doesn’t contribute

to the leading x̃ distribution.

The term in square brackets in (4.3) is simply the delta function πδ(θpq), restricted to

even functions. Note that the θ eigenvalue density is indeed an even function [7]. Taking

the large N limit and describing the eigenvalues by the joint density ρ(θ, x̃), as previously,

we have

1

N2
S(1) = π2TR

∫

dθ d6x̃ ρ(θ, x̃)|x̃|2 − π

∫

dθ d6x̃ d6x̃′ ρ(θ, x̃)ρ(θ, x̃′)|x̃ − x̃′| . (4.4)

We now proceed to minimise this action.
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The fact that the reduced density

ρ(θ) =

∫

d6x̃ ρ(θ, x̃) , (4.5)

is determined by the zero scalar VEV problem, together with preserving SO(6)R symmetry,

implies that the joint density is

ρ(θ, x̃) =
ρ(θ)δ(|x̃| − r(θ))

|x̃|5
√

1 + (dr/dθ)2Vol S5
, (4.6)

where the unknown function r(θ) determines the size of the S5 as it is fibred over the

support of ρ(θ). We recall that that we have already argued that other SO(6) symmetric

configurations for which the scalar field spectral density has a smooth six dimensional

support are not allowed, as in [4]. From (4.6) we have

1

N2
S(1) = π2RT

∫

dθ ρ(θ)r(θ)2 − π
√

2C

∫

dθ ρ(θ)2r(θ) , (4.7)

where

C =
2048

√
2

945π
. (4.8)

Completing the square gives

1

N2
S(1) = π2RT

∫

dθ

[

ρ(θ)

(

r(θ)− C√
2πTR

ρ(θ)

)2

− C2

2π2(TR)2
ρ(θ)3

]

. (4.9)

The final term only depends on θ and simply contributes to the two loop order distribution

of the θps. Therefore it can be ignored for our purposes. However, it will potentially influ-

ence higher loop computations for determining the order(s) of possible phase transitions

at finite coupling [7]

Hence, for a minimum we have

r(θ) =
C√

2πRT
ρ(θ) . (4.10)

This result directly connects the shape of the eigenvalue distribution and the eigenvalue

density, and implies that the topology change S5 × S1 → S6 occurs as T is increased

through the phase transition. This is because ρ(θ) changes from the uniform to a gapped

distribution with support −θ0 < θ < θ0, where ρ(±θ0) = 0 [7]. When ρ(θ) is uniform,

the distribution is S1 × S5, as in the previous section. Once ρ(θ) becomes gapped, then

the distribution is an S5 fibred over an interval with the size of the S5 vanishing at the

endpoints. This is topologically an S6.

We can now check the consistency of our expansion in x by investigating whether the

higher terms in the expansion are finite on the solution (4.10). The potentially dangerous

higher terms, coming from expanding e−n|xpq| cos(nθpq), have the form

N
∑

pq=1

∞
∑

n=1

λm+1

n

∣

∣nx̃pq

∣

∣

m+1
cos(nθpq) (4.11)

∼

∫ π

0
dξ sin4 ξ

∫ θ0

−θ0

dθ ∂m
θ

[

ρ(θ)ρ(θ′)(ρ(θ)2 + ρ(θ′)2 − 2ρ(θ)ρ(θ′) cos ξ)(m+1)/2

]

θ′=θ

.
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Here, we used the fact that

∞
∑

n=1

nm cos(nθ) = π∂m
θ δ(θ) , (4.12)

and integrated by parts. The question is whether the terms (4.11) are finite. The potential

problem occurs at the edges of the distribution θ = ±θ0 where there are possible singular-

ities. We know [7], see also the following section, that in the vicinity of the edge θ = θ0

the density behaves as ρ(θ) ∼ √
θ0 − θ. It is not difficult to show that the integrals are

completely regular at θ = θ0. Hence the analysis is consistent across the transition and

into the high temperature phase (assuming (TR)2 ≪ 1/λ).

In summary, inclusion of the lowest order corrections in λ leads to an interpretation of

the Hagedorn/deconfinement transition as a topology changing transition, S1 × S5 → S6,

in eigenvalue space. The possible implications of this geometric transition for the dual

spacetime will be discussed below.

5. Intermediate temperatures: S6 ellipsoid

We now determine the joint eigenvalue distribution in the temperature range 1 ≪ TR ≪
λ−1/2 and provide further evidence for the appearance of the S6 topology above the Hage-

dorn/deconfinement temperature. In this region, the θp have the Wigner semi-circular

distribution. To see this we have to analyse S(0) for TR ≫ 1. First of all, recall that the

single particle partition functions in (4.2) are given by [7]

zB(x) =
2x(3 + 6x − x2)

(1 − x)3
, zF (x) =

16x3/2

(1 − x)3
. (5.1)

For TR ≫ 1 this implies

zB(x) → 16(TR)3/n3 , zF (x) → 16(TR)3/n3 , (5.2)

and we expect that the θp are small at high temperatures, in which case using
∑∞

n=1(2n−
1)−2 = π2/8, we have in this limit

S(0) → −
N

∑

pq=1

(

log |θpq| − 2π2(TR)3θ2
pq

)

= −
N

∑

pq=1

log |θpq| + 4Nπ2(TR)3
N

∑

p=1

θ2
p . (5.3)

This is the action of the conventional Hermitian matrix model with quadratic potential.

The saddle point equation is

N
∑

q(6=p)=1

1

θp − θq
= 4Nπ2(TR)3θp (5.4)

In the large N limit we can solve for the density in the usual way, by introducing the

resolvent

ω(x) =
1

N

N
∑

p=1

1

x − θp
, (5.5)
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in terms of which (5.4) becomes

ω(θ + iǫ) + ω(θ − iǫ) = 8π2(TR)3θ , (5.6)

for −θ0 ≤ θ ≤ θ0 and ǫ is an infinitesimal which imposes on the left hand side a principal

value. It follows from (5.5) that

ω(θ + iǫ) − ω(θ − iǫ) = −2πiρ(θ) , (5.7)

where again −θ0 ≤ θ ≤ θ0. It then follows from (5.6) and (5.7) that the resolvent ω(x) is

an analytic function of x which has a square root branch cut between x = ±θ0. Since ω(x)

must go to zero for large |x| this determines uniquely

ω(x) = 4π2(TR)3
(

x −
√

x2 − θ2
0

)

. (5.8)

By taking the discontinuity across the cut we obtain

ρ(θ) = 4π(TR)3
√

θ2
0 − θ2 . (5.9)

Finally, normalising the density gives

θ2
0 =

1

2π2(TR)3
. (5.10)

Using (4.10) we see that in this region of intermediately high temperatures the com-

bined density has support on an ellipsoid with topology S6 given by

π2

λ24C2TR
x2 + 2π2(TR)3θ2 = 1. (5.11)

Given that TR
√

λ ≪ 1, this ellipsoid is very elongated in the θ direction. The eigenvalue

density (4.6) is largest at the highly pointed tips at x = 0.

6. High temperature distributions: S6 versus S5

This section studies the distribution at high temperatures 1 ≪ TR ≪ 1/λ, which includes

TR ∼ λ−1/2. We will see that in this regime the VEVs of the scalar fields are no longer

determined by the θp, but rather the full coupled system must be considered. The new

phenomenon we will find in this regime therefore could not be seen in previous analysis

that neglected these scalar VEVs.

It is worth remarking that for TR & λ−1/2, the S3 size exceeds the electric or Debye

scale, and perturbation theory in λ is replaced by a perturbation theory in
√

λ due to

infrared effects. Importantly for us, our one loop effective potential remains unaltered by

these resummations since the associated momentum integrals at high temperatures happen

to be insensitive to IR effects.

The analysis of the previous section, however, will break down at high temperatures

where TR & λ−1/2 for a different reason. At these temperatures, the distribution of the x
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will begin to affect the θs. This is precisely the region when the S6 begins to look spherical

in the dimensionless variables x and θ. However it is important to realise that the analysis

in this section has an overlap with the analysis of the last section when 1 ≪ TR ≪ λ−1/2.

To see what goes wrong with the earlier analysis look at the corrections (4.11). These

are
N

∑

pq=1

∞
∑

n=1

1

n

∣

∣nxpq

∣

∣

m+1
cos(nθpq) = π

N
∑

pq=1

∣

∣xpq

∣

∣

m+1
∂m

θ δ(θpq) . (6.1)

We can estimate the behaviour of these terms as a function of λ and TR by using the fact

that from (5.11) when TR ≫ 1 we have x ∼ λ(TR)1/2 and θ ∼ (TR)−3/2. Hence, the

correction goes like (λ(TR)2)m+1. Clearly these corrections cannot be ignored in the high

temperature regime.

However, we expect that when TR ≫ 1 then the eigenvalue distribution will satisfy

θp, |xp| ≪ 1. With these assumptions, the high temperature action is found to be

STR≫1 =
Nπ2TR

λ

N
∑

p=1

|xp|2−
1

2

N
∑

pq=1

log
(

|xpq|2 + θ2
pq

)

+π2R3T 3
N

∑

pq=1

(

|xpq|2 + 2θ2
pq

)

. (6.2)

The validity of the assumptions is verified a posteriori from the solution. The large N

equations of motion following from this action may be written

Px =

∫

d6x′ dθ′ ρ(x′, θ′)
(x − x′)

|x − x′|2 + (θ − θ′)2
,

Qθ =

∫

d6x′ dθ′ ρ(x′, θ′)
θ − θ′

|x − x′|2 + (θ − θ′)2
, (6.3)

where P = π2TR(1/λ + 2R2T 2) and Q = 4π2R3T 3. These equations have more than one

interesting solution. Once again, by application of the seven dimensional operator ∇2(∇·)
in the (x, θ) space, we can argue that non-trivial solutions to the equations of motion must

be hypersurfaces in seven dimensions. For a given P and Q there are two solutions which

preserve the SO(6)R symmetry. One is topologically S6 and the other is topologically S5.

We expect one of these maximally symmetric solutions to have the lowest action. Before

discussing the solutions, we comment on a scaling property of the solutions with P and Q.

In appendix C we present various solutions that do not preserve the full R symmetry.

6.1 Scaling of the solutions and action

The effect of changing the coupling or the temperature of the theory is incorporated in the

values of P and Q in the high temperature equations of motion (6.3). Under the rescaling

P̃ = µP , Q̃ = µQ , (6.4)

the equations of motion and the normalisation condition (3.5) imply that the solution

remains the same and scales to

x̃ =
1√
µ

x , θ̃ =
1√
µ

θ . (6.5)
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The action evaluated on the scaled solution becomes

S[x̃, θ̃] = S[x, θ] +
1

2
log µ . (6.6)

We can use this scaling property to fix Q and work with P/Q. When we do numerics

shortly, it will be convenient to work with Q = 1. Even though this value is not in the

high temperature regime, we simply have to scale the solutions as we have just described.

Note that
P

Q
=

1

4

1

(TR)2λ
+

1

2
, (6.7)

so that P/Q → ∞ corresponds to (TR)2λ ≪ 1, whereas P/Q → 1/2 corresponds to high

temperatures (TR)2λ ≫ 1 with the caveat (TR)λ ≪ 1. The solution in this regime only

depends on the combination (TR)2λ and so, increasing or decreasing this parameter can

also be interpreted as varying the value of the ’t Hooft coupling λ, at a fixed temperature

and at weak coupling.

6.2 S5 solutions

These have θ = 0 and preserve the full R symmetry group of the theory in the large N

limit. We can write the eigenvalue density

ρ(x, θ) =
δ(θ)δ(|x| − r)

π3r5
, (6.8)

where the radius is

r =
1√
2P

. (6.9)

Evaluating the action on the solution gives

1

N2
SS5 =

5

24
+

1

2
log 2P . (6.10)

These solutions are fully collapsed in the θ direction, ρ(θ) = δ(θ). At low temperatures,

these are unstable saddle point configurations, but play an important role at high temper-

atures as we show below.

6.3 Ellipsoidal S6 solutions

We now find the solutions which preserve SO(6)R symmetry and where the eigenvalues

spread out into a (closed) six dimensional surface in R
7. These are the high temperature

continuations of the ellipsoids we found at intermediate temperatures.

We can parametrise the surface by

θ = f(r) , (6.11)

where as before (although now without the factor or λ) r = |x|. The induced metric on

this surface is

ds2 = (1 + f ′(r)2)dr2 + r2(dφ2 + sin2 φdΩ2
4). (6.12)
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Thus, for instance, for a sphere of radius A we have f(r) = ±
√

A2 − r2 while for an ellipsoid

with semi-axes A and B, f(r) = ±B
√

1 − r2/A2. Note that the parametrisation we are

using forces us to consider the solution in terms of two separate components. We now

proceed to derive an action whose variation determines f(r).

By SO(6) symmetry, the most general spectral density for the eigenvalue distribution

at large N must be of the form

ρ(x, θ) = g(r) (δ(θ − f(r)) + δ(θ + f(r)) (6.13)

where f(r) is taken to be positive. We can now determine the action restricted to the SO(6)

symmetric ansatz. As we will be reducing the problem to one dimension, it is convenient

to introduce the effective spectral density

G(r) = 2π3r5
√

1 + f ′(r)2 g(r) . (6.14)

The high temperature action is therefore rewritten as

1

N2
S =

∫

dr G(r)(Pr2 + Qf(r)2) − 2

3π

∫

dr

∫

dr′
∫ π

0
dφ sin4 φ (6.15)

×G(r)G(r′) log
(

|r − r′|2 + (f(r) − f(r′))2
) (

|r − r′|2 + (f(r) + f(r′))2
)

.

We should also add a Lagrange multiplier term that implements the normalisation con-

straint: µ
(∫

drG(r) − 1
)

. By functionally differentiating with respect to G and f we can

show that this action consistently leads to the equations of motion restricted to our SO(6)

ansatz.

It is possible to perform the φ integral in (6.15) using contour integration. The answer

is

1

N2
S =

∫

dr G(r)(Pr2 + Qf(r)2) − 1

2

∫

dr

∫

dr′ G(r)G(r′)

[

log rr′ +
7

12
− log 2

+ log
(

√

K2 + 1 +
√

K2 − 1
)

− 2

3

3K2
√

K4 − 1 + 4(K4 − 1)

(
√

K2 + 1 +
√

K2 − 1)4
+ f(r′) → −f(r′)

]

+µ

(
∫

drG(r) − 1

)

, (6.16)

where

K2 =
r2 + r′2 + (f(r) − f(r′))2

2rr′
. (6.17)

In (6.16) we have reduced the problem to one dimension. Variation of this action leads to

a pair of integral equations for f(r) and G(r). We have solved these equations numerically

using a simple Monte Carlo algorithm. The algorithm discretises the r axis into N points:
∫

drG(r) → ∑N
i=1 and then minimises the multiparticle action (6.16) by relaxation. A test

of our code is that at the point with enhanced SO(7) symmetry, when P = Q, it correctly

reproduces a six sphere of radius 1/
√

2P . The action of this configuration may be found

analytically to be
1

N2
SS6

∣

∣

∣

∣

P=Q

=
107

120
+

1

2
log

P

2
. (6.18)
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Figure 2: Output from the Monte Carlo simulation for {P, Q} = {5, 1}, {2, 1}, {1, 1} with N =

500, 500, 1000 points, respectively. The solid lines are ellipses with axis ratio determined by the

data.

The numerically obtained action agrees with this exact result to three significant figures,

even with a fairly small number of points, N ∼ 60 or so. Our main interest is for P 6= Q,

for which we currently do not have analytic results.

The equations that we are solving numerically are very similar to those considered in

the recent paper [5], which was in a supersymmetric context. The two main differences

are firstly that we are looking for the semiclassical, N → ∞, saddle point, whereas [5]

perform a quantum Monte Carlo simulation to study the finite N wavefunction. Secondly,

we have restricted to an SO(6) invariant ansatz before applying numerics. This gives a

more efficient use of eigenvalues, which are diluted in fewer dimensions. However, it means

that the SO(6) symmetry is a (consistent) input assumption. The numerics in [5] did not

assume this symmetry but found it in their results. This provides the complementary

information that the SO(6) ansatz is stable against R symmetry breaking perturbations.

Figure 2 shows the eigenvalue distributions obtained for three values of P/Q. The form

is roughly what we could have anticipated, given that as P is increased the external force

pushing the eigenvalues to small r becomes greater. The eigenvalue distributions appear

to be ellipsoids to a very high degree of accuracy. This is perhaps not surprising given our

results from the intermediate temperature regime. The numerics are not accurate enough

to reliably read off a density profile.

The gap in the data points at small r in figure 2 is due to the fact that the effective

density, G(r), is very low in this region. This is due to the r5 term in (6.14). Note however

that there is a data point at r = 0 for all three curves. The solid lines in figure 2 are

the ellipses determined by the extent of the distribution in the r and f directions. These

curves match all the numerically obtained data points to two significant figures.

Given the appearance of ellipsoids, a rescaling-invariant question we can ask is how
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Figure 3: The axis ratio of the ellipsoidal distribution as a function of P/Q, with Q = 1. The

data points are from the Monte Carlo numerics whereas the solid line is a linear fit.

the axis ratio of the ellipsoid varies with P/Q. Figure 3 is a plot showing the axis ratio

at several values of P/Q. There appears to be a linear relation between these quantities

to good approximation over the range plotted. Figure 3 also shows a linear fit to the data

points for P/Q ≥ 2. The best fit line is

a

b
= −0.81 + 1.51

P

Q
, (6.19)

where a and b are the lengths of the axis in the f and r directions, respectively.

In the limit where λ(TR)2 ≪ 1, or P/Q large, we can compare the axis ratio with that

of the ellipsoid we found in the intermediate temperature regime (5.11). In terms of P/Q

it follows from (5.11) that the axis ratio for those ellipsoids is also linear in P/Q

a

b
=

945π

2048

P

Q
≈ 1.45

P

Q
. (6.20)

This is fairly close to (6.19), especially given that the fit (6.19) included a range of points

outside the region of validity of (5.11). A more precise matching comes from taking, for

instance, the value P/Q = 20. This corresponds to λ(TR)2 ∼ 1/80, and so should be

well described by the intermediate temperature analysis. For this value we find that the

numerical axis ratio is 29.6 whereas the analytic result is 29.0. This close agreement is a

test of both the numerics and analytic results.

Finally, we can compute the action of the solution as a function of P/Q. The result is

shown in figure 4 for Q = 1. We have also included in the plot the action of the round S5

solution and the action of the two dimensional ellipse solution discussed in [19].

As with the axis ratio, at large P/Q we can compare the numerically obtained ac-

tions with the analytic result in the intermediate temperature regime. At P/Q = 20 the

numerically found action is 1.04 and the action of the ellipsoid (5.11) is 1.09.

– 16 –



J
H
E
P
1
1
(
2
0
0
7
)
0
2
0

2.5 5 7.5 10 12.5 15 17.5 20
P�Q

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S�N^2

Figure 4: The action of three different eigenvalue configurations as a function of P/Q with Q = 1.

The data points are from the S6 ellipsoid. The solid curve is the round S5 solution. The dotted

curve is the two dimensional ellipse solution.

We see that throughout the range plotted, P/Q ≥ 1, the ellipsoidal eigenvalue distri-

bution has the lowest action and therefore dominates the partition function. Therefore,

at sufficiently weak coupling, the ellipsoidal distributions describe the vacuum of the the-

ory. However, as P/Q is lowered past 1, recall that lowering P/Q corresponds to either

increasing the temperature at fixed weak coupling or increasing the (weak) coupling at

fixed temperature, it looks like the curves for S5 and the six dimensional ellipsoid might

cross. This raises the prospect of a new phase transition in the high temperature regime

as a function of coupling.

7. A second order phase transition: S6 → S5

In figure 4 we saw that as the coupling is increased at fixed high temperature, the action for

the S5 solution comes closer and closer to that of the, increasingly anisotropic, ellipsoidal S6

solution. At the point with enhanced SO(7) where we have analytic results, P = Q = 1, the

difference between the actions is surprisingly small, given that P/Q = 1 is not particularly

close to the asymptotic regime P/Q → 1/2

1

N2
[SS6 − SS5 ]P=Q=1 ≈ −0.0098 . (7.1)

What happens as P/Q is decreased below this value? We now give four arguments that,

taken together, strongly suggest that a second order phase transition occurs in the com-

muting saddle at λ(TR)2 = 1, or P/Q = 3/4. This is the curve that we included in figure

1 above.

7.1 The actions converge

Figure 5 shows the action from the numerical computation together with the analytically

computed action of the round S5 solution (6.10) as a function of P/Q, for 0.7 ≤ P/Q ≤ 1.2.
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Figure 5: The data points are the numerically computed action (with N = 150). The curve is the

action of the S5 solution.

We see that to within the accuracy of the numerical computation, the error seems to

be under 0.5%, the numerical data joins the curve of the S5 action somewhere around

P/Q ∼ 0.75 or 0.8 and then follows this curve for lower P/Q.

The simplest interpretation of figure 5 is that beyond some critical coupling, such that

P/Q ∼ 0.75 or 0.8, the S5 saddle becomes the lowest action configuration. The Monte

Carlo simulation therefore converges on the S5 saddle below this value. If this indeed

occurs, it indicates that there is a quantum phase transition at the critical coupling in

which the vacuum manifold of eigenvalues changes topology: S6 → S5. It is a quantum

phase transition in the sense that it is not associated with any symmetry breaking and the

different phases have topological characterisations. It is possible however to write down

non-topological “order parameters” that go from non-zero to zero as we cross the transition,

such as 〈x2〉2 − 〈x4〉. It should be clear from this order parameter that the transition will

not be visible if the scalars are integrated out.

The convergence of actions does not tell us whether the possible transition is first or

second order. We will now show analytically that at P/Q = 0.75 the S6 saddle becomes

completely localized in the θ direction and becomes a round S5. Furthermore, we we will

find zero modes about the S5 solution at precisely P/Q = 3
4 which provide compelling

evidence that there is indeed a second order phase transition.

7.2 The S6 collapses to S5

Motivated by the numerical results above, we now look for an analytical condition on the

parameters P and Q, for the S6 solution to collapse to an S5. The central fact we will

use is the existence of the S6 saddle for an appropriate parameter range, a fact which we

have established both numerically and analytically for a wide range of temperatures. In

the temperature range TR ≫ 1, the S6 topology solves the equations (6.3).

Since the S6 solution is actually a round S5 fibred over a finite interval in the θ
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direction, we may differentiate the second equation of motion (6.3) with respect to θ to

obtain a condition which must be fulfilled by the same solution:4

Q =

∫

d6x′ dθ′ ρ(x′, θ′)
|x − x′|2 − (θ − θ′)2

(|x − x′|2 + (θ − θ′)2)2
. (7.2)

We emphasize that this will be automatically satisfied by the SO(6) symmetric S6 topology,

since the equation of motion holds at each point on the support of ρ(x, θ) in the θ direction.

We now want to find at what temperature the extent of the effective distribution in

θ shrinks to zero size, and thus the S6 collapses to an S5. In such a limit, we expect the

density function ρ(x, θ) to smoothly approach (6.8) with the S5 radius equal to 1/
√

2P .

Substituting these into (7.2), we find

Q

P
=

4

3
. (7.3)

It is easy to check that the integral in (7.2) is well behaved in the limit that θ, θ′ approach

zero, and that the limiting value of 4
3 is approached from below. Hence the S6 topology

ceases to exist for Q/P > 4
3 which translates to TR > λ−1/2, and at these temperatures

with a fixed weak coupling, the equations of motion are only solved by the S5 configuration

of eigenvalues.

We remark that this transition from S6 to S5 cannot be seen in the λ = 0 theory,

since the critical temperature is T = 1/(
√

λR) , and is driven by the presence of the scalar

expectation values in the N = 4 theory.

7.3 The S5 saddle develops a zero mode

Now consider the stability of the S5 solution (6.9). As mentioned above, we expect the

S5 solution will be stable against perturbations in the xp directions that would break R

symmetry. It is important to check this and we do so in appendix B. However, something

interesting occurs if we consider perturbations in θp.

Returning for the moment to the discrete system, the quadratic action for fluctuations

δθp is given by

δ(2)S = QN

N
∑

p=1

δθ2
p − 1

2

N
∑

pq=1

(δθp − δθq)
2

|xpq|2
. (7.4)

It is straightforwardly shown that in the large N limit, the N eigenvalues are all equal to

N(Q − 4
3P ). Hence, the solution is only stable when Q/P > 4

3 , that is

TR >
1√
λ

. (7.5)

When Q/P < 4
3 it is unstable to spreading out in the θ direction. We have already found

the high temperature configuration with θ spread out: it is the S6 ellipsoid.

4We may do this consistently for every value of θ lying inside the distribution, and by continuity we can

aslo apply the condition to all points approaching the edges of the distribution in θ-space.
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Figure 6: From left to right, the eigenvalue distributions with P/Q = 0.9, 0.8 and 0.75. Numerically

computed with N = 150 eigenvalues and Q = 1.

The appearance of zero modes in the S5 vacuum and negative modes for TR < λ−1/2,

in conjunction with our earlier observation that the S6 solution merges with the S5 at

TR = λ−1/2, provides clear and solid evidence for a second order phase transition at this

temperature.

We remark that although there are N zero modes at the transition there is only one S6

vacuum due to the action of the Weyl group permutations on the joint eigenvalues (φp, θp).

7.4 The eigenvalue distributions converge

In further support of this picture, let us look in more detail at the output of the numerics as

P/Q → 3
4 . The output no longer resembles the ellipses shown in figure 1 but rather gives a

cluster of points around a radius that is very close to the radius of the S5, 1/
√

2P as found

in (6.9) above, and f = 0. This is what we would expect to see if the density of eigenvalues

of the S6 were accumulating on the equator as the ellipsoid becomes increasingly squashed.

In the limit of this process, the solution becomes an S5.

The three graphs in figure 6 illustrate this process. As P/Q → 3
4 , the eigenvalues

start to cluster around 0.81 ≈ 1/
√

2 × 0.75. As in the previous section, the gaps in the

distribution are partly due to a low effective eigenvalue density (6.14) as r → 0. However,

we clearly see the gap growing as the eigenvalues become more densely clustered around

the equator of the squashed ellipsoid.

8. Dual spacetime interpretation

A striking recent development in the supersymmetric sector of the zero temperature

AdS/CFT correspondence is that the scalar field eigenvalue distribution can be directly

connected to the dual spacetime geometry [2 – 5]. The most immediate manifestation of

this connection is that the S5 part of the eigenvalue distribution is to be identified with the

S5 part of the dual AdS5 ×S5 geometry [4]. One can think of the eigenvalue distribution

as signalling the fact that the spacetime geometry has undergone a geometric transition,

in which a noncontractible S5 appears, due to the gravitational backreaction of the N D3

branes. More generally, the eigenvalue distribution is to be identified with the locus in the

dual spacetime where the S3 of the conformal boundary geometry degenerates [4, 5]. In

AdS5 this is simply the origin of the AdS space.

– 20 –



J
H
E
P
1
1
(
2
0
0
7
)
0
2
0

The question is then whether, in our finite temperature, non supersymmetric and weak

coupling setup, we can reinterpret the various topology changes undergone by our eigen-

value distributions as topology changes in a dual spacetime, analogous to the Hawking-Page

transition. Although our saddles are not generically the dominant saddles, the assumption

of commuting matrices does mean that they are the most ‘geometric’ saddles at weak cou-

pling. At low temperatures, our S1 × S5 distribution looks promising. This is indeed the

topology of Euclidean thermal AdS at the origin of the AdS space.

The S1 appearing in the low temperature S1 × S5 eigenvalue distribution should in

fact be associated with the T-dual of the thermal circle in spacetime, insofar as T-dualising

along a thermal circle is well defined. This is because eigenvalues of the Wilson line around

a circle, in our case the Polyakov-Wilson loop around the thermal circle, yield the locations

of D branes in the T-dual transverse circle. Supporting this observation, the radius of the

S1 circle is proportional to the temperature T , if we renormalize the low temperature S5

radius (3.8) to unity.

The S6 eigenvalue distribution appearing above the first order Hagedorn transition has

a natural explanation if one takes the notion of T-duality along the thermal circle seriously.

In this picture, the Polyakov loop eigenvalues represent positions of D2 branes, T-dual to

the original D3 branes, along the T-dual circle. The gapped distribution of the Polyakov

loop eigenvalues above the Hagedorn transition is then a localized distribution of D2 branes

on this circle. A similar localization of D2 branes on a spatial circle, at finite temperature,

has been argued [20] to produce a near horizon geometry containing a non-contactible

S6. In that case, somewhat tantalizingly, an S1 × S5 → S6 topological transition of

the Gregory-Laflamme type was predicted from supergravity, and the localized D2 brane

configuration was reinterpreted as winding mode condensation on the original circle. The

interpretation of a nonuniform eigenvalue distribution as smeared branes has also been

used previously to good effect in studying a field theory dual of the Gragory-Laflamme

black string instability in [21].

From the weakly coupled field theory perspective, the connection to a D2 brane setup

above the Hagedorn/deconfinement temperature and below T = 1/(
√

λR), perhaps sug-

gests that the field theory is in an effectively three dimensional phase in that region of the

phase diagram. The potential appearance of an S6 topology in the dual spacetime would

be consistent with this line of thinking: At any fixed temperature, as the ’t Hooft coupling

is decreased so that string corrections become substantial, at a critical coupling, when the

size of the thermal circle in string units becomes sufficiently small, the theory undergoes a

stringy transition resulting in the S6 topology.

More interesting is the possible dual spacetime interpretation of the S5 topology above

the second order transition at TR = λ−1/2. It is tempting to identify this topology as the

deep interior of the big black hole in AdS5 ×S5 wherein the thermal circle has shrunk to

zero size at the horizon. The simplest phase diagram implied by the new phase transition,

shown in figure 1, also suggests that this phase might be the continuation to weak coupling

of the big black hole in AdS space.

It is natural to try to associate the disappearance of the product S1 factor in the

eigenvalue distribution with the appearance of a black hole in the dual geometry. However,
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it is difficult to make this connection precise. For a start, in black hole geometries the spatial

S3 never collapses. The Euclidean thermal circle degenerates at the horizon instead. The

zero temperature connection of the eigenvalue distribution to the locus of vanishing S3s in

the dual spacetime will need to be modified in the non-supersymmetric thermal situation

for a spacetime interpretation of the eigenvalue distributions to be possible. Since these

distributions characterize the ground state or the deep IR of the thermal field theory on S3,

it is possible that they provide information about the deep interior of the dual geometry.

9. Discussion and conclusions

In this paper we have studied weakly coupled finite temperature N = 4 super Yang-Mills

theory on a spatial S3, in the large N limit. The main difference between our work

and previous treatments, [7] being the most important, is that we have considered the

effects of condensed eigenvalues for the six scalar fields of the theory, as well as the time

component of the gauge field, A0. These scalar eigenvalues have been studied recently in

the zero temperature theory [4, 5] where their condensate is directly related to the dual

spacetime geometry. The scalar eigenvalues condense despite having conformal and thermal

masses because there is a logarithmic repulsion between the eigenvalues, which at large N

overcomes the mass squared terms.

We have only studied certain special saddle points of the full large N theory, in which

the homogeneous modes of the fields {A0,ΦJ} condense and commute with each other.

Although these are not generically the dominant saddles, and thus do not determine the

phase structure of the theory, they have several interesting features. Firstly, they are

tractable saddles that preserve the full SO(6)R symmetry of the theory. We have seen that

they undergo nontrivial dynamics as a function of temperature and coupling. More spec-

ulatively, because these are the most geometric saddles at weak coupling, one can wonder

whether they have any connection with the geometry that arises in the strongly coupled

theory via the AdS/CFT duality. For instance, if a mechanism similar to that described

in [4] is responsible for the emergence of spacetime geometry at finite temperature, then

the strongly coupled theory will be described by a commuting saddle point. In this sce-

nario, our weak coupling saddles would be continuously connected to the strong coupling

supergravity geometry.

At low temperatures and through the Hagedorn phase transition into the deconfined

phase, the picture of [7] is not fundamentally modified. The eigenvalue distribution of A0

which that paper considered becomes part of a higher dimensional distribution: S5 × S1

at low temperatures and an ellipsoidal S6 above the transition. However, at sufficiently

high temperature TR = λ−1/2, or alternatively, when the coupling becomes sufficiently

strong (but still small) we found evidence for a new second order phase transition, in the

commuting saddle. This transition is directly due to the backreaction of the scalar field

eigenvalues on the eigenvalues of A0. Therefore, this transition could not have been seen

without inclusion of the scalar field eigenvalues. In terms of distributions, at the transition:

S6 → S5.
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We presented four pieces of evidence for a second order phase transition in the weakly

coupled theory at λ = 1/(TR)2, with TR ≫ 1. Firstly, we found numerically that the

actions of the S5 and S6 saddles meet at this coupling. Secondly, we showed analytically

that the S6 solution collapses to S5. Thirdly, the S5 solution develops a zero mode at

precisely this point. Finally, we numerically showed how the S6 distribution becomes

increasingly squashed and approaches an S5 at this coupling.

An application of the results in this paper is that they will allow the computation

of the Maldacena-Polyakov loop at weak coupling in the commuting saddles. This is a

thermal Wilson loop involving both the gauge potential and the scalar fields, which arises

naturally in the N = 4 theory. These loops may be computed at strong coupling [23]

and are therefore an interesting observable to compare at weak and strong couplings. It

would be interesting to understand how the S6 → S5 phase transition we have discussed

is reflected in the value of these loops.
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A. Stability of the solutions

In this appendix, we will consider the stability of some of our solutions. In particular,

we shall consider both the high and low temperature S5 solutions. We only consider the

stability to perturbations in xp and θp, and not to other modes that we have integrated

out.

The high temperature S5. We begin with the high temperature S5 solution of section

6.2. By choosing
∑

p xp =
∑

p θp = 0, and scaling the xp and θp appropriately, the discrete

action (6.2) has the form

S = −1

2

N
∑

pq=1

log
(

|xpq|2 + θ2
pq

)

+ N
N

∑

p=1

(

|xp|2 + σθ2
p

)

(A.1)

with σ = Q/P , The S5 solution corresponds to θp = 0 and |xp| = 1/
√

2. Expanding

around the solution to second order in the fluctuations, we have xp = 1√
2
Ωp + δxp, where

Ωp is a unit 6-vector, we have

δS = N

N
∑

p=1

(

|δxp|2 + σθ2
p

)

− 1

2

N
∑

pq=1

( |δxpq|2 + θ2
pq

1 − Ωp · Ωq
−

(

(Ωp − Ωq) · δxpq

1 −Ωp ·Ωq

)2)

+ · · · . (A.2)
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At large N , let us estimate the orders of N of the off-diagonal relative to the diagonal

terms in the quadratic form of (A.2). Firstly the off-diagonal terms. One might think that

when δΩ = Ωp − Ωq is small these can be large relative the diagonal terms. The question

is: how small can δΩ be for N points distributed uniformly on S5? If it were an S1 then

this would be ∼ 1/N and so the sum over pairs in (A.2) would be of order N2 and so the

off-diagonal terms would dominate and there would be instabilities. However, on S5 the

distribution of the relative angle cos ϑ = Ωp ·Ωq is weighted by a factor sin4 ϑ. Hence, near

ϑ = 0 the average separation in ϑ is δϑ where

8N

3π

∫ δϑ

0
dϑ sin4 ϑ = 1 (A.3)

i.e., δϑ ∼ N−1/5. Hence, the off diagonal terms in (A.2) are at most O(N2/5) and conse-

quently are subleading at large N and we can ignore them for the purposes of establishing

stability.

To summarize, the issue of stability is determined solely by the diagonal terms; how-

ever, we shall find it necessary to go up to quartic order in order to settle the issue.

To all orders, we have

S + δS = N

N
∑

p=1

(
∣

∣

∣

∣

1√
2
Ωp+δxp

∣

∣

∣

∣

2

+σθ2
p−

N
∑

q=1

log
(

(1+
√

2Ωp · δxp)(1 − Ωp ·Ωq) + |δxp|2

+θ2
p −

√
2δ⊥xp ·Ωq

)

)

, (A.4)

where δ⊥x are the variation perpendicular to Ωp, i.e. tangent to S5. We can evaluate δS

by replacing the sum over Ωq by an integral
∫

d5Ω and use

∑

q

F(Ωp · Ωq, δ⊥xp · Ωq) −→
2N

π

∫ π

0
dψ sin3 ψ

∫ π

0
sin4 ϑF(cos ϑ, |δ⊥xp| sin ϑ cos ψ) .

(A.5)

This gives to quartic order,

δS =
N

3

N
∑

p=1

(

(3σ − 4)θ2
p + 2(Ωp · δxp)

2 + 2
√

2(Ωp · δxp)
(

|δxp|2 + 2θ2
p

)

(A.6)

+|xp|4 + 4|δxp|2θ2
p + 6θ4

p

)

+ · · · . (A.7)

From this, a careful analysis reveals that the solution is stable so long as σ > 4
3 as claimed

in the text. Notice that the fluctuations tangent to the S5 are only stable to quartic order.

The low temperature S5. We can prove the stability of this solution using exactly the

same arguments. First of all, the action from section 3 is

S =
π2βR

g2

N
∑

p=1

|φp|2 −
β

2

N
∑

pq=1

|φpq| (A.8)
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and the solution consists of an S5 with φp = rΩp, where we have defined the radius

r = 1024λ/(945π3R). As above only the diagonal terms play an important rôle in the large

N limit. Similar methods give

δS =
Nπ2λβ

8R

N
∑

p=1

(

(Ωp · δφp)
2 +

945π3

2048
(Ωp · δφp)

(

(Ωp · δφp)
2 − 6|δφp|2

)

−893025π6

33554432

(

5(Ωp · δφp)
4 + 24(Ωp · δφp)|δφp|2 − 24|δφp|4

)

)

+ · · · . (A.9)

A careful analysis of this reveals expression proves that the solution is stable against all

fluctuations.

B. A bestiary of saddles breaking R symmetry

As well as the absolute minima of the action discussed so far, we can also find various solu-

tions to the effective action that do not exhibit SO(6) invariance. These solutions break the

maximal R symmetry in certain patterns as we describe below. An important observation

is that at any temperature they have bigger action than the dominant maximally SO(6)R
symmetric solutions which we have described so far. Therefore they are all unstable or

metastable. These solutions may be relevant for studies of the theory at finite chemical

potential.

One interesting question raised by the existence of these saddle points is whether they

survive into the strong coupling regime. If they do, then presumably one should expect to

find corresponding (unstable) supergravity solutions with reduced R symmetry preserved.

Of the solutions that we are about to list, the lower dimensional spheres were essentially

considered in [22], whereas the products and fibrations of spheres are new.

As well as the solutions described here, there are also special two dimensional ‘Coulomb

gas’ solutions described in [19]. In those solutions only one scalar field is non-zero. That

solution is also different to those listed below in that it uses the θ direction in a non-trivial

way.

Low temperatures: TR ≪ 1. Within this range of temperature, the θ distribution is

uniform. Therefore there is always an S1 part of the eigenvalue distribution. In the order

of increasing action, the solutions we have found are as follows:

• S1 × S1 × S3: The eigenvalue density is

ρ(θ,x) =
δ(|~x| − A)δ(|~y| − αA)

8π4α3A4
, (B.1)

where α is the ratio of the S3 and the S1 and the vectors ~x and ~y span 2D and 4D

planes respectively. The equations of motions for ~x and ~y determine the radius A

and the ratio α as

A =
λC1

2π4TR
, (B.2)
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with C1 = 3.8921 . . . and α = 1.4344 . . . . The action evaluated on this solution reads

1

N2
SS1×S1×S3 = − λ

TR

(1 + α2)C2
1

4π6
. (B.3)

The difference between the actions of the maximally symmetric S1×S5 solution and

this S1 × S1 × S3 solution is then

TR

λ

1

N2
∆S ≡ TR

λ

1

N2

[

SS1×S1×S3 − SS1×S5

]

≈ 0.98 × 10−5 . (B.4)

• S1 × S2 × S2: The eigenvalue density is ρ(θ,x) = 1
32π3A4 δ(|~x| − A)δ(|~y| − A), where

the vectors ~x and ~y span 3D planes. The radius A, action and difference in actions

with the S1 × S5 solution are

A =
2λ(2

√
2 − 1)

15π2RT
,

1

N2
SS1×S2×S2 = − λ

RT

8

π2

(

2
√

2 − 1

15

)2

,

TR

λ

1

N2
∆S ≈ 0.103 × 10−4 . (B.5)

• S1×S1×S1×S1: The eigenvalue density is ρ(θ,x) = 1
16π4A3 δ(|~x|−A)δ(|~y|−A)δ(|~z|−

A) , where the vectors ~x, ~y and ~z span 2D planes. The radius A, action and difference

in actions with the S1 × S5 solution are

A =
λC2

16π5TR
[C2 = 98.7075 . . . ] ,

1

N2
SS1×S1×S1×S1 = − λ

TR

3

256π8
C2

2 .

TR

λ

1

N2
∆S ≈ 0.209 × 10−4 . (B.6)

• S1×S4: The eigenvalue density is ρ(θ,x) = 3
16π3A4 δ(|~x|−A)δ(x6), where the vectors

~x span a 5D plane. We have

A =
12λ

35π2TR
,

1

N2
SS1×S4 = − λ

RT

122

352π2
,

RT

λ
∆S ≈ 0.144 × 10−3 . (B.7)

• S1×S1×S2: The eigenvalue density is ρ(θ,x) = 1
16π3α2A3 δ(|~x|−A)δ(|~y|−αA)δ(x6) ,

where α is the ratio of the S2 and the S1 and the vectors ~x and ~y span 2D and 3D

planes respectively. We have

A =
λC3

8π3RT
[C3 = 5.4034 . . . ] ,

1

N2
SS1×S1×S2 = − λ

RT

(1 + α2)C2
3

64π4
[α = 1.2404 . . . ] ,

TR

λ

1

N2
∆S ≈ 0.165 × 10−3 . (B.8)
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• S1 ×S3: The eigenvalue density is ρ(θ,x) = 1
4π3A3 δ(|~x|−A)δ2(~y) , where the vectors

~x and ~y span 4D and 2D planes. We have

A =
16λ

15π3RT
,

1

N2
SS1×S3 = − λ

RT

162

152π4
,

TR

λ

1

N2
∆S ≈ 0.374 × 10−3 . (B.9)

• S1 × S1 × S1: The eigenvalue density is ρ(θ,x) = 1
8π3A2 δ(|~x| − A)δ(|~y| − A)δ2(~z) ,

where the vectors ~x, ~y and ~z span 2D planes. We have

A =
λC4

8π4RT
[C4 = 18.912 . . . ] ,

1

N2
SS1×S1×S1 = − λ

RT

C2
4

32π6
,

TR

λ

1

N2
∆S ≈ 0.428 × 10−3 . (B.10)

• S1 ×S2: The eigenvalue density is ρ(θ,x) = 1
8π2A2 δ(|~x|−A)δ3(~y) , where the vectors

~x and ~y span 3D planes. We have

A =
λ

3π2RT
,

1

N2
SS1×S2 = − λ

TR

1

9π2
,

TR

λ

1

N2
∆S ≈ 0.796 × 10−3 .

(B.11)

• S1 × S1: The eigenvalue density is ρ(θ,x) = 1
4π2A

δ(|~x| − A)δ4(~y) , where the vectors

~x and ~y span 2D and 4D planes. We have

A =
λ

π3R
,

1

N2
SS1×S1 = − λ

TR

1

π4
,

TR

λ

1

N2
∆S ≈ 0.179 × 10−2 . (B.12)

Intermediate temperatures: 1 ≪ TR ≪ λ−1/2. For temperatures high enough above

the deconfinement transition, we have shown above that the θ distribution is gapped. To

zeroth order in λ it is given by,

ρ(θ) = 4π(TR)3
√

θ2
0 − θ2, θ2

0 =
1

2π2(TR)3
. (B.13)

The intermediate temperature joint eigenvalue densities are obtained from the solutions

listed in the previous subsection by multiplying the eigenvalue densities of the previous
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subsection by 2πρ(θ) and letting the radii A become a function of θ, which we will denote

r(θ), where

r(θ) =
Cλ√
2πRT

ρ(θ) , (B.14)

where C is now a constant that will depend on the particular solution, as we shall see

below.

Combining equations (B.13) and (B.14) we find that the solutions within this range of

temperature have the ellipsoidal like form:

π2

4C2λ2TR
r2 + 2π2(TR)3θ2 = 1 . (B.15)

The topology of these solutions will no longer be S6 however, but rather lower dimensional

spheres and various singular spaces.

• The S1 × S1 × S3 solution of the previous section becomes S1 × S3 fibred over an

interval. Topologically, this is a singular space which may be described as an S5

in which a linked S1 and S3 have been pinched to a point. The space is described

by (B.15) together with

x2
1 + x2

2 =
1

α2
(x2

3 + · · · + x2
6) = r2 . (B.16)

The coefficient in (B.14) is C = 0.557 . . . and as before the ratio α = 1.4344 . . . .

• The S1 × S2 × S2 solution of the previous section becomes S2 × S2 fibred over an

interval. This is a singular space given by S5 in which two linked S2s are pinched to

a point. It is described by (B.15) together with

x2
1 + x2

2 + x2
3 = x2

4 + x2
5 + x2

6 = r2 . (B.17)

The coefficient C = 4
15(4 −

√
2).

• The S1 ×S1 ×S1 ×S1 solution of the previous section becomes S1 ×S1 ×S1 fibred

over an interval. It is given by (B.15) together with

x2
1 + x2

2 = x2
3 + x2

4 = x2
5 + x2

6 = r2 . (B.18)

The coefficient C = 0.5628 . . . .

• The S4 × S1 solution becomes a squashed S5, given by (B.15) together with

x2
1 + · · · + x2

5 = r2 , x6 = 0 . (B.19)

The coefficient C = 24
√

2
35 .

• The S1 × S1 × S2 solution becomes S1 × S2 fibred over an interval. Topologically

this is an S4 where a linked S1 and S2 have been pinched to a point. It is given

by (B.15) together with

x2
1 + x2

2 =
1

α2
(x2

3 + x2
4 + x2

5) = r2 , x6 = 0 . (B.20)

The coefficient C = 0.608 . . . , and as before the ratio α = 1.2404 . . . .
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• The S3 × S1 solution becomes a squashed S4, given by (B.15) together with

x2
1 + · · · + x2

4 = r2 , x5 = x6 = 0 . (B.21)

The coefficient C = 32
√

2
15π .

• The S1×S1×S1 solution becomes S1×S1 fibred over an interval, which is topolog-

ically and S3 with two linked S1s pinched to a point. It is given by (B.15) together

with

x2
1 + x2

2 = x2
3 + x2

4 = r2 , x5 = x6 = 0 . (B.22)

The coefficient C = 0.169 . . . .

• The S1 × S2 solution goes over to a squashed S3, given by (B.15) together with

x2
1 + x2

2 + x2
3 = r2 , x4 = x5 = x6 = 0 . (B.23)

The coefficient C = 2
√

2
3 .

• The S1 × S1 solution goes over to a squashed S2, given by (B.15) together with

x2
1 + x2

2 = r2 , x3 = · · · = x6 = 0 . (B.24)

The coefficient C = 2
√

2
π .

High Temperatures: TR ∼ λ−1/2. In this range of T , recall that the relevant action is

S =

∫

dθd6xρ(θ,x)
(

P |x|2 + Qθ2
)

− 1

2

∫

dθdθ′d6xd6x′ρ(θ,x)ρ(θ′,x′) log
(

|x − x′|2 + (θ − θ′)2
)

. (B.25)

As the temperature increases the width of the θ distribution becomes narrower. Simi-

larly to the SO(6) symmetric case, we expect a second order phase transition to occur at a

critical temperature, and for ρ(θ) to collapse to a delta function above that temperature.

We will now describe R symmetry breaking solutions with

ρ(θ) = δ(θ). (B.26)

One finds the solutions and evaluates their actions in the same spirit as in the previous

subsections. It turns out that the order of the actions evaluated on these solutions stay

the same and one finds the following ordering:

SS1×S3 < SS2×S2 < SS1×S1×S1 < SS4 < SS1×S2 < SS3 < SS1×S1 < SS2 < SS1 . (B.27)

The actions have the following values, putting P = 1 without loss of generality, respectively:

0.556775, 0.556853, 0.559185, 0.570093, 0.574554, 0.596574, 0.610025, 0.653427, 0.846574.

We note that the first three solutions in (B.27) are extremely close to the value of the

maximally symmetric solution S5 (0.554907).
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